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In 1932 Wigner defined and described a quantum mechanical phase space distri- 
bution function for a system composed of many identical particles of positive 
mass. This function has the property that it can be used to calculate a class of 
quantum mechanical averages in the same manner as the classical phase space 
distribution function is used to calculate classical averages. Considering the har- 
monic vibrations of a system of n atoms bound to one another by elastic forces 
and treating them as a gas of indistinguishable Bose particles, phonons, the 
primary objective of this paper is to show under which circumstances the Wigner 
formalism for classical particles can be extended to cover also the phonon case. 
Since the phonons are either strongly or weakly localizable particles (as described 
in a companion paper), the program of the present approach consists in applying 
the Jauch-Piron quantum description of localization in (discrete) space to the 
phonon system and then in deducing from such a treatment the explicit expression 
for the phonon analogue of the Wigner distribution function. The characteristic 
new features of the "phase-space" picture for phonons (as compared with the 
situation in ordinary theory) are pointed out. The generalization of the method 
to the case of relativistic particles is straightforward. 

1. I N T R O D U C T I O N  

I n  1932 W i g n e r  def ined  a n d  descr ibed  a q u a n t u m  m e c h a n i c a l  phase  

space d i s t r i b u t i o n  f u n c t i o n  f ( k ,  x, t) for  a sys tem c o m p o s e d  o f  n iden t i ca l  

par t ic les  o f  pos i t ive  mass  (Wigne r ,  1932). As  is by  n o w  well  k n o w n ,  the 

f ( k ,  x, t) c a n n o t  be  rega rded  as b e i n g  a ~ - s p a c e  dens i ty ,  because  the  
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uncertainty principle makes it impossible to simultaneously specify the posi- 
tion x and momentum )~ of a particle at a given time t. Nevertheless, this 
function has many properties analogous to those of the classical distribution 
function. For example, it turns out thatf(k,  x, t) can be used to calculate a 
class of quantum mechanical averages in the same manner as the classical 
phase space distribution function is used to calculate classical averages. One 
merely multiplies the Wigner distribution functionf(k, x, t) and any classical 
one-particle additive phase space function A(L, x) whose average is desired, 
and then integrates the resulting product over the entire phase space. Also, 
when the function f (g ,  x, t) is integrated over all momenta, it gives us the 
average density of particles at the space-time point x, t. Further, if one 
integrates f ( k ,  x, t) with respect to x, one obtains the average density of 
particles with momentum k at time t, a result that was to be expected for 
the momentum space distribution function. 

It should be emphasized that the Wigner distribution functionf(k,  x, t) 
is not in general positive. Moreover, as demonstrated in a recent analysis by 
Davidovi6 and Lalovi6 (1992), it is too much to require that everyf(L, x, t) 
smoothed out over phase space regions of dimensions larger than those of 
minimum uncertainty be always positive. In spite of these properties of 
f(L, x, t), Wigner was right in stressing that his function, which can be 
chosen as being real, is in a certain sense the simplest and most natural 
quantum analogue of the classical phase space distribution function. 

The important assumption in Wigner's (1932) paper is that the states 
of the physical systemconsidered can be identified with the density matrices, 3 
i.e., with the self-adjoint, positive, linear operators/) of unit trace acting on 
some suitably constructed Hilbert space ~ .  In order to study the time 
evolution off(L, x, t), Klimontovich (1975) introduced a phase space opera- 
torf(L, x, t), actually a quantum field in phase space, which has the property 
that its expectation value on a state/5 is equal to f (L,  x, t). The main justi- 
fication for the detailed analysis of the properties of a phase space operator 
f(L, x, t) lies in the hope that this analysis may provide a means of describing 
transport phenomena in a self-contained way, starting from a systematic 
derivation of an equation of motion for f(L, x, t). 

In a companion paper (Banach and Piekarski, 1993), we outlined the 
proof for the existence of a notion of localizability for phonons, i.e., quasi- 
particles arising from the harmonic vibrations of a system of n atoms bound 
to one another by elastic forces. The essential ingredient in the discussion 
was the postulate, first formulated by Mackey (1953, 1958) and Wightman 

3As remarked already by Emch (1972), the universal validity of this assumption is by no means 
obvious. 
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(1962), that the adequate mathematical tools for the investigation of localiZ- 
ability are the projection operators/~(A) acting on the Hilbert space ~ o )  
of one-phonon states, where A is an arbitrary subset of the set D that 
consists of n vectors x specifying the equilibrium positions of n atoms. The 
expectation value of an observable E(A) on a normalized state [3>~Jet ~ 
gives us the probability that the phonon belongs to the atoms whose equilib- 
rium positions are characterized by the members of A. We presented (Banach 
and Piekarski, 1993) the elementary formalism pertinent to the explicit con- 
struction of projection operators/~(A) and subsequently recognized that if 
in the system of n atoms there exist normal modes of zero frequency, then 
the phonon is only weakly localizable. [The general properties of weakly 
localizable particles are discussed in Jauch and Piron (1967) and Amrein 
(1969).] 

Using the results established in Banach and Piekarski (1993), the pur- 
pose of this paper is to define the number-of-phonons operator 4 A/t(A) corre- 
sponding to A at time t, to introduce the phonon analogue of the 
Kiimontovich phase space operator .f(L, x, t), to derive various relations 
satisfied by it, to obtain the closed equation of motion for it, 5 and finally to 
demonstrate that its expectation value has many similarities to the original 
Wigner distribution function f (L,  x, t). 

However, closer inspection shows that these similarities are rather for- 
mal and that the differences between classical particles and phonons are 
more fundamental. First, it should not be forgotten that, since a phonon is 
characterized by a label j (Banach and Piekarski, 1993), we must replace L 
byj. 6 Second, for phonons the space is discrete [a finite or countably infinite 
set of degrees of freedom (Jensen, 1964; Jensen and Nielsen, 1969)], while 
it is continuous for particles in ordinary space (Wightman, 1962; Jauch and 
Piron, 1967; Amrein, 1969). Consequently, in the prese~ case x can take 
on only discrete values. Finally, the phonon analogue off(k,  x, t),denoted 
byfA(j, x, t), depends in general on A. The quantum pseudofield fa(j ,  x, t) 

4The restriction of Nt(A) to the Hilbert space JY tt) of one-phonon states is equal to the 
projection operator  bT,(A) at time t. 

51n obtaining this equation, we restrict at tention to the harmonic model in which the interactions 
between phonons are not  considered. 

61n the important  case of a perfect crystal subject to the Born-von Karman cyclic boundary 
conditions (Born and von Karman,  1913), we can identify j with a pair (k, s), where k is a 
discrete wave vector varying within the first Brillouin zone and s is an integer which runs from 
1 to r (r denotes the number  of atoms per unit cell). The (infinitesimal) space-rotational 
symmetry is broken by the appearance of the Born-von Karman conditions, al though 
the effective cyclic Hamil tonian is still invariant under a continuous translation. (Obviously, 
the ground state of the system does not manifest this symmetry.) Thus, as k ~ 0, three of  the 
branches ~s(k) must  have frequencies that  approach zero. These are known as the acoustic 
branches. 
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is defined in such a way that 7 

3n 

E fA(j, x, t) 
j=d-I-1 x~A 

represents the operator N,(A) corresponding to the number of phonons 
"localized in" A at time t. In addition, if we consider the phonons of a 
particular kindj  and wish to know how the average number of them changes 
with time, we should calculate the expectation value of ~--~o f o ( j ,  x, t) for 
every t. 

Certainly, the most significant new feature that arises in our approach 
is the fact that only for phonons which are localizable in the ordinary sense 
[d=0 (Banach and Piekarski, 1993)] do the operatorsfA(j, x, t) not depend 
on A. It is probably this new complication which has been most directly 
responsible for the delay in the explicit construction of a phonon analogue 
of the Wigner distribution function. Fortunately, if in the system composed 
of vibrating atoms there exist no normal modes of zero frequency, these 
additional complications may be avoided altogether, provided one considers 
the Hamiltonian which is not invariant under the (infinitesimal) transla- 
tions and/or rotations. If needed, this may be enforced by altering the 
Hamiltonian or considering a situation in which there is interaction between 
particles and an external system. From the conceptual point of view, how- 
ever, the above-mentioned complications are quite important, because, as 
first observed by Jauch and Piron (1967) and Amrein (1969), they charac- 
terize the typical properties of weakly localizable particles. 

By way of digression, we mention that our elementary formalism can 
easily be modified to cover the crystal case as well (see footnote 6), with 
naturally the obvious exception that in solid-state physics it is the custom 
to introduce the complex eigenvectors of the dynamical matrix. In addition, 
we are able to generalize the method of this paper to the case of classical 
and relativistic particles. 

Here we proceed as follows. To prepare for the analysis, in Section 2 
we look more closely at the problem of defining the number-of-phonons 
operator. Section 3 first introduces the phonon analogue of the 
Klimontovich phase space operator and then derives the closed equation 
of motion satisfied by it. We conclude the paper with final remarks in 
Section 4. 

7The notation in this paper is taken from our previous considerations (Banach and Piekarski, 
1993); thus d denotes the number of  normal modes of zero frequency, n signifies the total 
number of  vibrating atoms, and A is an arbitrary subset of  the set D that consists of  n vectors 
x specifying the equilibrium or average positions of  n atoms. 
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2. DEFINITION OF THE NUMBER-OF-PHONONS OPERATOR 

2.1. The Case of Strongly Localizable Phonons 

As demonstrated in a companion paper (Banach and Piekarski, 1993), 
the analysis of a notion of localizability for phonons is a matter of introduc- 
ing the projection operators/~t(A) acting on the Hilbert space ygo) of one- 
phonon states 13). Restricting attention to the system composed of strongly 
localizable phonons (d= 0), these projection operators take the form 

/~o(A) := ~ZA(X)3.(x) Y+(x)l~) (2.1) 
a ,x  

at time t=0,  where Zz~(x)= 1 if x~A, and 0 if xEDkA. Without further 
comment we shall use those symbols that either are reasonably standard or 
appear for the first time in Banach and Piekarski (1993). Here let us only 
recall that 3~(x), a = 1, 2, 3, is the position-space Schr6dinger function and 
that ~'~(x) is the detection operator expressed in terms of the annihilation 
operators ~j and the eigenvectors e~(x l J) of the dynamical matrix [K]: 

3n 

]/,(x):= ~ e~(xlj)~j (2.2) 
j = d +  I 

The definition (2.2) applies to every admissible value of d, but in the present 
special case we must set d= 0. If one assumes that there are no normal modes 
of zero frequency (~s>0 for j =  1 . . . . .  3n), one can identify I{) with the 
ground state of the phonon system. This identification is no longer valid for 
d r  see Section 3.1 in Banach and Piekarski (1993). 

Let ~ denote the Hilbert space of all phonon states. The ~ is obtained 
as the completion of the pre-Hilbert space that accommodates the states [~) 
with a finite (but otherwise arbitrary) number of phonons. If d= 0, we can 
verify formally that ~ is a Fock space (Emch, 1972). The construction of 

for d e 0  is described in Banach and Piekarski (1993, Section 3.1). Sup- 
pose now that N0(k) is an operator on ar whose expectation value with 
respect to density matrices/~ characterizes the number of phonons "localized 
in" k at time t = 0. The question then is, using W, is it possible to establish 
the connection between/~0(A) and N0(A)? Within the context of relativistic 
quantum mechanics, Amrein (1969, Section X) has shown how to determine 
the number-of-particles operator for any given system of projection opera- 
tors E0(A). Clearly, we may illustrate the general considerations of Amrein 
by applying them to the projection defined by (2.1) ; the result of our calcula- 
tions is as follows: 

N-0(A)=N~0S)(A):= E ~+(x) o r (2.3) 
x ~ A  

This result, in turn, is physically expected. Mathematically, however, it is 
intimately linked to the fact that d= 0. 
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We want to close this subsection by^pointing out that the restriction of 
~ro(A) to ~ffo) can be identified with Eo(A) and that the operator N,(A) 
which represents the number of phonons "localized in" A at time t is 
given by 

where 

Nt(A) = exp (h HBt) Aro(A) exp (--h/tBt ) (2.4a) 

371 

hl2j(~+ a: aj) (2.4b) 
j = d +  1 

d=0 (2.4c) 

Obviously, to get ~,(A) for weakly localizable phonons, we must first modify 
the definition of N0(A) and then abandon the condition (2.4c) in (2.4b). 

2.2. The Case of Weakly Localizable Phonons 

Since the method of obtaining ?r for d#0  coincides with the con- 
struction as it appears in the theory of strongly localizable phonons, we shall 
confine ourselves to giving the final answer, amplified by short comments 
that are required for the clarification of the formal statements. In the prob- 
lem of localizability considered here, the projection operators/~0(A) acting 
on ~(1) at time t=O are of the form (Banach and Piekarski, 1993) 

/~o(A) := E Za(x)3~(x; A) ~'~+(x)l~) (2.5a) 

where 

Y, [ea(x'lp) o3(x')]e~(xlp) (2.5b) 
p e I ' a  x'~A 

r ,  := { 1, 2 . . . . .  a,} (2.5c) 

The integer da satisfying the inequality da < min(d, 3na), where na represents 
the number of elements in A, will in general depend upon the choice of the 
subset A of D (e.g., dD= d). It follows from our previous discussion (Banach 
and Piekarski, 1993, Section 4.2) that the real vectors ea(xlp), peFa,  are 
linear combinations of e(xlj), j eFn  = { 1, 2 , . . . ,  d}. We should recall also 
that 

E ea(x IP) ~ ea(xlP ') = 5e,.' (2.6) 
x~A 
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With the use of the explicit formula (2.5a) and the universal formalism 
of Amrein (1969), it is not difficult to obtain the operator No(A) correspond- 
ing to the number of phonons"localized in" A at time t = 0 [precisely speak- 
ing, the expectation value of N0(A) on a state ~ gives us the average number 
of phonons that belong to the atoms (points) whose equilibrium positions 
are characterized by the members of A] : 

/V0(A) =~r~0")(A):= E Y+(x; A) o Y(x; A) (2.7a) 
x~A 

Y'a(x;A):= Ya(x)- E E [ea(x'lp) ~ (2.7b) 
p~F^ x'~A 

We infer from (2.7) that in the case of weakly localizable phonons the 
operator N{oS)(A) of equation (2.3) should not be regarded as being the true 
correlate of the number of phonons in A at time t = 0. Indeed, a glance at 
(2.7) shows that it is impossible to write the correct operator N~o')(A) for 
weakly localizable phonons as a single sum over A, because, as noted in 
Banach and Piekarski (1993, Sections 4.2 and 4.4), the restrictions of 
NCo")(Aj) and )V~0")(A2) to +~r do not commute for  every pair Al, A2 of 
subsets of D. [The restriction of Nc0")(A) to ~r o) is equal to the rhs of (2.5a).] 
However, we see by (2.3) and (2.7) that 

(.~ I sf<o"o(A)l.~) < (~  I S~o")(A) I ~ )  (2.8) 

where b~)~vg; equality holds if A = D  or if N~o"')(A)l.~)=ml.~), m=  
0,1 . . . . .  

The inequality (2.8) resembles quite closely a result first established by 
Amrein for phonons [see Amrein (1969), condition (121), p. 186], differing, 
however, in that Amrein interprets A as a Borel subset of Euclidean three- 
space E3. 

The evolution in time of Aro(A) is characterized by (2.4a) and (2.4b). 

3. THE PHONON ANALOGUE OF THE KLIMONTOVICH PHASE 
SPACE OPERATOR 

3.1. Discussion of the Problem for d - 0  

Given the number-of-particles operator N,(A) for a phonon system, we 
can try to find some connection between the results about N,(A) and the 
predictions of the theory based upon the universal ideas of Wigner (1932) 
and Klimontovich (1975). Namely, it is tempting to introduce the operators 
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)~(j, x, t) acting on #rg such that 
3n 

E E ~ J ,  x, t)=hr,(A) (3.1a) 
j =  1 x e A  

f l j ,  x, t)=~+(t)~j(t) (3,1b) 
x ~ D  

where [Banach and Piekarski (1993), equations (2.14b)] 

aj(t) =exp(-tf~jt)aj,  ~. (t) " ^+ ^ " ^ = exp(~j  t)aj (3. lc) 

Since N-t(A) has a well-defined quantum mechanical meaning and 
+ ^ aj (t)aj(t) is an operator corresponding to the number of phonons of a 

particular kind j, we shall refer to the expectation value o f f ( j ,  x, t) on a 
state 15, denoted by Tr/Sf(j, x, t) or simply by f ( j ,  x, t), as the phonon 
analogue of the Wigner distribution function (Wigner, 1932). 

It is natural to ask now whether one might be able to determinef(j, x, t) 
explicitly. We have already noted in the Introduction that f ( j ,  x, t) is not an 
observable. Therefore, the best that we can hope to do is to define ]( j ,  x, t) 
in terms of e~(xlj) and 

3n 

~'~(x, t):= ~ e~(xlj)~j (3.2) 
j = l  

which has many features analogous to those of the classical operator. For 
concreteness sake, let us examine the following proposition: 

f ( j ,  x, t):= y' [e(x'lj) o r t)][e(xlj) o ~'(x, t)] (3.3a) 
x ' E D  

je{1, 2 . . . . .  3n}, xeD (3.3b) 

By substituting (3.2) into (3.3a) we arrive at 
3n 

, t  ^ 4 -  ^ jT(j, x, t )= Z [e(xlj)o e(xlj )]aj (t)aj,(t) (3.4) 
j '=l  

Although the operator (3.3a) does not have the property of being 
Hermitian, straightforward calculation shows that our proposition renders 
(3. l a) valid for every A and that equation (3. l b) is also satisfied when j =  
1, 2 . . . . .  3n. [Just as in the case of particles existing in •3, we could try to 
modify the definition of ](j,  x, t) by replacing x' by x -  �89 and x by x + �89 
on the rhs of (3.3a). This modification is not possible for discrete systems, 
however, because in general x+�89 does not belong to D ifx and x- �89 are 
members of D.] Clearly, the proposition (3.3a) is not the only way to recon- 
cile the conditions (3. l a) and (3.1 b). Instead, we may introduce the operator 
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of the form 

/~c(j, x, t):= cf(j ,  x, t) + (1 - c)f+(j, x, t) (3.5) 

where c is a real or complex number; the Fc(j, x, t) is Hermitian if c=�89 We 
easily verify that equations (3.1 a) and (3.1 b) do not provide a unique deter- 
mination of c. 

Now that we have set down the preliminaries, we shall try to obtain the 
equation of motion satisfied by f ( j ,  x, t) in the harmonic approximation. 
After a bit of algebraic manipulation which employs only the definition of 
~'a(x, t) and the orthonormality of ea(x[j), we find 

~f(t)~y,(t) = E f(J ,J ' ,  x, t) (3.6a) 
x ~ D  

where 

Hence 

and 

A . " t  

f(J,J,  x, t):= E [e(x'l j)o Y+(x', t)][e(x Ij')o Y(x, t)] (3.6b) 
x ' ~ D  

f ( j , j ' ,  x, t) # f ( j ,  x, t) when j # j '  (3.7a) 

f ( j , j ' ,  x, t) = f ( j ,  x, t) when j = j '  (3.7b) 

Here, equation (3fib) is intended to serve as an indication that the gen- 
eralized operator f ( j , j ' ,  x, t) should be used in place o f f ( j ,  x, t). 

Indeed, in view of (3.4), (3.6), (3.7a), and 
^ +  ^ __ �9 ^ +  ^ ~,(aj (t)aj,(t)) - t (Dj-  f~j,)aj (t)aj,(t) 

we could never hope to discover a closed equation of motion for f ( j ,  x, t). 
However, by exactly the same argument as we have just gone through, we 
can see that there is a closed equation of motion obeyed by f ( j , j ' ,  x, t): 

3n 

a t f ( j , j ' , x , t ) = i  • E (f~J-~J") 
j ' = l  x ' E D  

x [e(xlj ') o e(x l j " )] f ( j , j " ,  x', t) (3.8) 

In deriving (3.8) from (3.6b), we have used the alternative expression for 
f ( j ,  j ' ,  x, t) of the form 

3 n  

f(J,J,^ " "  x, t) = • [e(xlj ') o e(xlj")]~f(t)~/,(t)  (3.9) 
j " = l  

Although equation (3.8) is quite complicated in structure considering 
the simplicity of the Hamiltonian involved, we can in principle solve this 
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, * " " t) on a state/~ is determined by equation" the expectation value o f f ( j ,  j ,  x, 
Tr ~f ( j , j " ,  x', 0). One way or another, equations (3.8), (3.7b), and (3.1a) 
are necessary to form the mathematical basis of all the techniques for charac- 
terizing the behavior of the number-of-phonons operator N,(A). 

Having made these comments about the indirect physical meaning of 
f ( j , j ' ,  x, t), we shall study now the connection betweenf(j , j ' ,  x, t) and the 
operator g,(A) corresponding to the energy "localized in" A at time t. Recall- 
ing the universal idea of Amrein (1969, Section IX), we first mention that if 
f ( j , j ' ,  x, t) is to stand in any relation to ~t(A), this relation can never reduce 
to the statement that ~t(A) for A # D  be simply a sum over { 1, 2 , . . . ,  3n} • A 

of the product of hf~j andf ( j , j ,  x, t). As a matter of fact, if A1 and A2 are 
disjoint subsets of D and 13)e~ff(l) is an eigenvector of Et(A,), then the 
expectation value of ~,(A2) on a normalized one-phonon state 13) is 
not equal to zero. Indeed, the operator ~,(A) is given by [Amrein (1969), 
equation (89)] 

~,(A):= E CJ+(X, t) o l~,(x, t) (3.10a) 
xEA 

where 
3R 

(~,~(x, t):= ~ (I~j)'/2e~(xlj)~j(t) (3.lOb) 
j = l  

Hence, using (3.10b) and (3.6a), we conclude that 
3n 3n 

E E E E 
j = l  j ' = l  xeA x ' eD 

x [e(xlj) o e(xlj ' )] f( j , j ' ,  x', t) (3.11) 

3 .2 .  D i s c u s s i o n  o f  the  P r o b l e m  for d ~ 0  

Now we consider the case of weakly localizable phonons. Equation 
(2.7a) can be taken as the starting point for the determination of the phonon 
analogue of the Wigner distribution function, using a procedure very similar 
to that of Section 3.1. It is therefore completely within the spirit of the 
previous arguments to introduce the operators 

fA(j,j ' ,  x, t) ( j , j '=d+ 1 , . . . ,  3n; xeD)  

acting on ~ such that 
3n 

~. E fa(j , j ,  x, t)=N,(A) (3.12a) 
j = d + l  xEA 

E fD(j,j, x, t)=~f(t)aj(t) (3.12b) 
x e D  
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The new feature in our proposition [as compared with equations (3. la) and 
(3. lb)] is, of course, the dependence offA(j,j', x, t) upon A. 

We gain a better insight into the nature and origin of this dependence 
if we write the number-of-phonons operator ~,(A) in terms of t~:(t) : 

Ar,(A) = y. ~'+(x, t; A) o ~'(x, t; A) (3.13a) 
XE& 

3n 

~'(x, t ;A)=  Z XA(xlj)~:(t) (3.13b) 
j = d + l  

Xa(xlj):--e(x{j)- ~ Y, [ea(x'{p) oe(x'lj)]eA(xlp) (3.13c) 
p~I"  A x '~A 

Should we want to conjecture that every operator j~(j,j ,  x, t) on the lhs of 
(3.12) does not depend upon A, we would, as the careful analysis of (3.13c) 
suggests, require implicitly that the vector X~(xlj) be equal to e(xl j ) ;  we 
know, however, from several explicit examples [see, e.g., the discussion in 
Banach and Piekarski (1993, Section 5)] that this requirement can be violated 
if d #  0; we therefore conclude that the operators fA(j, j', x, t) are not neces- 
sarily independent of A. The results below reinforce this statement. 

Before proceeding further, we first observe that if 

Y(x, t; A):=exP(h~IBt)Cl(x; A) exp(-h~IBt ) (3.14) 

is written in the form (3.13b), then by using the orthonormality properties 
of e~(x I J) and the identity [the eA(xlp), p eFA, is a linear combination of 
e(x]j) ,  j =  1 , . . . ,  d (Banach and Piekarski, 1993)] 

e(xl j )  o ea(xJp)=0 
x~D 

(pEF~,j=d+ 1 . . . . .  3n) (3.15) 

it is easy to show that 

3:(0 = Z e(xlj)  o Y(x, ~'; A) (3.16a) 
x~D 

where 

j=d+ 1, . . . ,  3n (3.16b) 

Directly from FD = { 1, 2 . . . . .  d} and e~ I P) = e(x I P) we also conclude that 
(Banach and Piekarski, 1993) 

Lo(xlj)=e(xlj), j=d+ 1 . . . . .  3n (3.17) 
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Since our method of  obtaining ea(o I P), P e FA, delivers the three-component 
function e(olj)tA, j~Fn ,  as an exhibited linear combination of  ea(olp), 
p e F a ,  we finally see that (Banach and Piekarski, 1993) 

e (x l j )  o Y(x, t; A)=0 ,  j e F n  (3.18) 
x~A 

With these preliminaries by way of introduction, we are now ready to 
study the properties of  the following expression for fa ( j , j ' ,  x, t): 

fa ( j , j ' ,  x, t) := ~" [e(x'{j) o Y+(x', t; A)][e(xlj ' )  o Of(x, t; A)] 
x '~D 

3n 

= o LA(xIJ )]aj (t)@,(t) (3.19a) [e(x [j ') . . . .  + A 
j " = d +  1 

j , j ' = d +  1 , . . . ,  3n, x~D (3.19b) 

From (3.13a), (3.17), (3.18), and 
3n d 

ea(xlj)ep(x'lj)=3~,~Sx,x ' -  5". e~(x[j)e~(x' l j)  (3.20) 
j = d + l  j = l  

we may easily prove that the opera tors fa ( j , j ' ,  x, t) as given by (3.19) satisfy 
the conditions (3.12a) and (3.12b). 

Next, using the relation [this relation is a consequence of equation 
(3.15) and the definition (3.13c) of  Z.a(x I J)]  

Y. e (x l j )  o LA(xI j ' )=Sj j  , (3.21) 
x~D 

in which j, j '  ~{d+ 1 . . . .  ,3n}, one can show that 
3n 

^ " " t ) = i  5". • (~j-ff~j") ~ t f a ( J , J  , X, 
j " = d + l  x '~D 

A 

• [e(x I j ' )o  LA(x Ij")]fA(j,j", x', t) (3.22) 

In this way, we get to the closed equation of  motion obeyed byfA( j , j ' ,  x, t). 
By appeal to the same device as proposed in Section 3.1 it is also possible 

to find the connection between the operator ~t(A) corresponding to the 
energy "localized in" A at time t andfA( j , j ' ,  x, t). However, we shall not 
discuss here this aspect of  the theory of weakly localizable phonons. 

To sum up: Equations (3.8) and (3.22) are derived by neglecting the 
anharmonic effects. The analysis of  the d ~ 0  case is no more complicated in 
principle, but it involves some algebraic complexities. The main difference 
between the two cases is that for d = 0  one has to replace LA(X IJ") by e(x )j") 
in equation (3.22) and then interpret the operators fA( j , j ' ,  x, t) as being 
insensitive to the choice of  the subset A of D. 
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4. F I N A L  R E M A R K S  

In this and the companion paper we have treated only a very simple 
molecular model: a system composed of n atoms bound to one another by 
elastic forces. Although the theory of this model is consistent with the specific 
principles governing the behavior of lattice vibrations in perfect crystals, it 
may be formulated completely without ever using them, and without ever 
specifying the symmetry properties of an equilibrium configuration of n 
atoms. As a matter of fact, we may say that if we study the definition of a 
notion of localizability for phonons arising from the harmonic vibrations 
of a system of atoms about their equilibrium positions, then (in the absence 
of external forces) this definition is influenced primarily by the precise form 
of the eigenvectors associated with all normal modes of zero frequency. In 
considering these eigenvectors it is not necessary to assume that there exists 
a group of symmetry operations which transforms the equilibrium config- 
uration of atoms into itself. However, any idea based upon the introduction 
of normal modes of zero frequency must at least include the possibility, 
altogether natural for an inertial frame of reference, that the potential energy 
of the system may remain invariant under arbitrary infinitesimal translations 
and rotations. (By way of digression, the conservation of total momentum 
and total moment of momentum arises because of invariance of the 
Hamiltonian against infinitesimal translations and rotations.) 

Although mathematically meager, our method has the distinct advan- 
tage of offering a precise explanation of the statement that, in certain cases 
of conceptual interest, the phonons are only weakly localizable. It allows us 
to investigate, with some justifiable confidence, the particle aspects 
of phonons for discrete systems described by a finite number of degrees of 
freedom. The extension of this last observation to the system consisting 
of an infinite number of atoms is, of course, a problem of considerable 
complexity~ One obvious reason for this is that, with the important exception 
of a perfect crystal subject to the Born-von Karman cyclic boundary condi- 
tions (Born and von Karman, 1913), we can draw no conclusions about the 
"thermodynamic limit" n ~ ~ [unless we make some arbitrary assumptions 
regarding the unknown dependence of e(xl j )  upon n]. (See also our com- 
ments at the end of this section.) 

In the systematic development of the theory of either strongly or weakly 
local~able phonons, the axioms are formulated in terms of projection opera- 
tors E,(A). It turns out that these operators have properties which stand in 
close analogy to those first discovered by Jauch and Piron (1967) within the 
context of consequent relativistic theory of elementary particles of mass zero. 
The construction of E,(A) enables us to use the universal method of Amrein 
(1969) in order to obtain the explicit expression for the number-of-phonons 
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operator Nt(A). Moreover, our approach renders the resulting formula rig- 
orously proved, not merely formal. From this point of view, we conclude 
that since the theory is consistent with the Jauch-Piron quantum description 
of localization (in a discrete space D), the operator N-,(A) is to be considered 
as a guide to introduce (in a certain sense) the simplest and most natural 
phonon analogue of the Wigner distribution function (Wigner, 1932). 

Once the basic expression of fa ( j , j ' ,x ,  t) in terms of e~(xlj) and 
~'a(x, t; A) has been established, we may derive the closed equation of 
motion satisfied byfa(j, j ' ,  x, t). Such an equation arises because the anhar- 
monic contributions to the Hamiltonian/q have been completely left out. 
Clearly, to say more about the t evolution offA(j,j ' ,  X, t) than (3.22) asserts, 
we must first specify the equilibrium configuration of a system of n atoms 
and then develop the properties of Dj and ea(x {J) ; moreover, we must enter 
into the details regarding the meaning of j. We could try to exhibit some 
aspects of this program. However, to erect the general structure of the theory 
of localizable phonons, we need not descend beyond the elementary formal- 
ism proposed, e.g., in Banach and Piekarski (1993). 

If one restricts one's attention to the perfect crystal subject to the Born- 
von Karman cyclic boundary conditions, one can think of a symbol j as 
being a pair (k, s), where k is a discrete wave vector varying within the first 
Brillouin zone and s is an integer running from 1 to r (r denotes the number 
of atoms per unit cell). As mentioned at the end of the Introduction, our 
approach to localizable phonons can easily be modified to cover also the 
crystal case, with naturally the obvious exception that in solid-state physics 
it is the custom to introduce the complex eigenvectors of the dynamical 
matrix (Jensen, 1964; Jensen and Nielsen, 1969). Now, by referring to the 
kinetic theory of phonon excitations in dielectric crystals (Gurevich, 1980) 
we expect that when j =  (k, s), then under some kind of passage to the 
continuum limit the equation of motion for the expectation value of either 
A A 

for fA will be very similar to the "collisionless' part of the Boltzman-Peierls 
equation (Peierls, 1955; Gurevich, 1980). Such is indeed the case, but this 
preliminary paper does not allow space for the more complete treatment of 
these problems. 

Finally we note that if we attempt to construct the projection operators 
/~,(A) for an infinite perfect crystal (n ~ oo), then a slight modification of 
the present method can justly be regarded as a method for formally approxi- 
mating Et(A) by a sequence of projection operators/~")(A); these operators 
correspond to a family of crystals with an increasing number of atoms. We 
shall not exhibit the specimens of this calculation herej we want only to 
mention that the resulting set of projection operators E,(A) forms a gen- 
eralized system of imprimitivities describing weakly localizable phonons. 

To summarize, in the conventional presentation there is a clear-cut 
distinction between the Jauch-Piron quantum theory of localization in space 
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and the Wigner function formalism. Actually, however, the application of 
the ideas of  our two papers bridges the gap between the two points of view. 
Thus, it would also seem natural to apply our ideas to the construction of  
the Wigner distribution function for other particle systems, e.g., relativistic 
particles. 
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